Worm gear reducers RT/MRT

Home   /   ENG   /   Production   /   Worm gearboxes   /   Worm gear reducers RT/MRT

Worm gear reducers RT/MRT

Size : 28, 30, 40, 50, 60, 70, 80, 100, 120, 150, 180

Transmission ratio : „i“ = 5 – 100

Power: 0,06 – 15 kW

Torque: 8 – 2540 Nm

General design

Modern design, proved quality, reliability and the involute gear profile used at the worm gearing guarantee trouble-free service of RT / MRT . . A, series gear unites manufactured by TOS ZNOJMO. The RT/MRT30A to RT/MRT80A gear unit housings, feet and flanges are made of aluminium alloy and are supplied unpainted as standard. The RT/MRT100A to RT/MRT180A gear units housings are of cast iron and are supplied RAL5021 green-blue painted. By request any worm-gear unit can be supplied in stainless steel execution.

Characteristic properties of worm-gear units:

  • High gear ratio 5 to 100 achieved by one gear unit only
  • Noise-free operation
  • High load capacity
  • Self-locking ability
  • Reduced weight
  • Easy integration to the driven machine

Identification of basic design

RT . . Worm-gear unit with the solid input shaft
MRT . . Worm-gear unit with an electric motor or with hollow

input shaft fitted with a flange for B5 mounted electric motor or

B14A mounted motor or B14B mounted motor

MRP . . Worm-gear unit with spur gear step (i = 3) at the input shaft
MAT . . MRT worm-gear unit with ATC in-line gearbox at the input shaft

( i = 3,4 and/or i = 6, and/or i = 8

MRT . . x . . Combination of two worm-gear units to achieve very high gear ratios

i = 4,000. Gearbox combinations up to i = 10,000 ratio are available as an option.

Selection

General

The wide range of ratios specified in the catalogue enables to solve any requirements resulting from the operation of various equipment. The following data are necessary to specify a suitable gear unit:

a) input and output speed determining the gear ratio i
b) required torque Mk, or input power P1

The data given in the tables 8.1 až 8.4, enable easy selection of a suitable gear unit. Should a non-standard unit be required please contact your distributors for the technical support.

Gear Ratio i

Gear ratio is a relation between input speed n1 [rpm] and output speed n2 [rpm].

n1
i = ———————   
n2

 

Gear ratios from 5 to 100 are used at worm-gear units. The use of squirrel cage asynchronous motors is recommended to drive the equipment as their speed n1 [rpm] is almost constant even if under load. The following speed can be used for 50 Hz:

  • 2 – pole motor n1=2800 rpm
  • 4 – pole motor n1=1400 rpm
  • 6 – pole motor n1=900 rpm
  • 8 – pole motor n1=700 rpm

Two-pole motors are usually suitable for short-time operation.. It is, however, possible to use these after consultation with the manufacturer. Their use should be consulted with the manufacturers. When 60 Hz supply frequency is used the increase of the input as well as output speed by 20 % need to be taken into consideration.

Torque M2

The required torque Mk is determined by the load applied on the gear unit. It can be described as force F applied at certain distance of the arm r.

Mk[Nm] = F[N] x r[m]

The output torque M2 can be calculated from the following formula:

    9550 x P1[kW] x η[%] x i
M2[Nm] = —————————————–           
100 x n1[rpm]

The output torque M2 is selected greater than the desired torque. 2 need to be selected at a higher value than the required torque. Output torque related to individual gear ratios is specified in the Gear Unit Selection 8.4.

Input and Output Power P1 and P2

Motor input power can be calculated from the general relation between torque M and speed n :

             M[Nm] x n[rpm] 
P[kW] = —————————-
      9550

The efficiency , of a gear unit is given by the ratio of the output power P2 and the input power P1, see Table 8.1 to 8.3.

             Mkrequired [Nm] x n2[rpm] 
P1[kW] = —————————————————-
      9550 x [%]

Service Factors

Operation factor Sm

In order to guarantee operation safety at various loads and operation conditions the type of the gearbox (and motor) must be specified through the operation factor Sm. The values of operation factor Sm can be found in Table 6.1 taking the type of load, the average daily operation, the number of starts per hour into consideration. These values are applicable when the gear unit is used in conjunction with an electric motor. Should a brake motor be used the operation factor Sm needs to be multiplied by a coefficient of 1.15. When selecting an actual gear unit the operation factor Sm must be lower than the gear unit service factor Sf or the required output torque Mp must be increased as per the following formula:

M2 = Mp x Sm

Tab. 6.1 Service Factors

Kind of load Number of starts per hour Average daily operation [hr]
<2 2÷8 9÷16 17÷24
Normal shock-free operation, small inertia (fans, gear pumps, assembly lines,
conveyer screws, liquid mixers, filling machines and wrapping machines)
<10 0,8 1 1,2 1,3
Light jolts at starting, irregular operation, medium inertia (conveyer belts, hoists,
winches, kneading and mixing machines, woodworking machines, printing machines,textile machines)
<10 1,0 1,3 1,5 1,6
10÷50 1,2 1,4 1,7 1,9
50÷100 1,3 1,6 2,0 2,1
100÷200 1,5 1,9 2,3 2,4
Heavy shock irregular operation, high inertia (concrete mixers, suction pumps,

compressors, rams, rolling mills, heavy goods conveyer belts, bending machines,

presses, machines with irregular load and motion)

<10 1,2 1,5 1,8 2,0
10÷50 1,4 1,7 2,1 2,2
50÷100 1,6 2,0 2,3 2,5
100÷200 1,8 2,3 2,7 2,9

Service factor Sf

Service factor Sf is a ratio between the maximum output torque the gearbox can continuously develop and the actual output torque which can be developed by the selected electric motor.

M2max
Sf = ————————— [ – ]
M2

The maximum torque M2max is established for the operation factor Sm = 1. Service factor values for individual gearbox executions and sizes, the gear ratios and a selection of electric motors are shown in the Table 8.4

Reversibility and parameters

Reversibility

A worm gearing is self-locking if it is not possible to turn the input shaft by turning of the output shaft. The worm gearing is self-locking if the worm helix angle is lower than the friction angle at idle or when the static efficiency of the gearing is lower than 50 %. The gearing is then statically self-locking. Should the worm helix angle be lower than dynamic friction angle or when the dynamic efficiency of the gearing is lower than 50 %, the gearing is dynamically self-locking.

The following relation applies:

 = tg / tg(+)    or     = tg  / tg( + arctg( z))

   … efficiency
   … worm helix angle
   … friction angle ( =arctg(z))
z … coefficient of friction in gearing

Static coefficient of friction between gear materials (steel – bronze) is within the range of z = 0.09 to 0.14 depending on the lubricant used (its age, conditions and temperature) and the roughness of contact surfaces (given by gearing wear). The conforming friction angle is s = 5° to 8°.

When static self-locking property can be influenced by vibrations or shocks a dynamic coefficient of friction shall be considered. The value of the dynamic coefficient of friction depends on surface roughness, the lubricant used, the load applied and the sliding speed. It ranges within z = 0.02 and 0.05 for standard load and speed 900 to 1400 rpm. The conforming dynamic friction angle is d = 1° to 3°.

With respect to the fact that the helix angles are higher than 1,5° at all gear ratios, the 100% self-locking cannot be guaranteed. In cases when the gear unit must be secured against slipping, it is recommended to use electric motors with brakes.

Tab. 16.2. Self-locking Status

γ Self-locking
>25° total reversibility
12° – 25° static reversibility
reversing rapidly
dynamic reversibility
8° – 12° variable and static reversibility
reversing rapidly when vibrating
dynamic reversibility
5° – 8° static self-locking
reversing when vibrating
light dynamic self-locking
3° – 5° static self-locking
reversing slowly when vibrating
almost dynamically self-locking
light dynamic reversibility when vibrating
1° – 3°

<1°

static self-locking
dynamic self-locking
light dynamic reversibility when vibrating
full static and dynamic self-locking

Table of actual transfers

  MRT30A  MRT40A  MRT50A 
iN  z2  z1  iR  z2  z1  iR  z2  z1  iR 
5  29  6  4,833  26  5  5,2  30  6  5 
7,5  30  4  7,5  31  4  7,75  31  4  7,75 
10  29  3  9,667  29  3  9,6667  29  3  9,6667 
12,5  37  3  12,33  37  3  12,333  38  3  12,667 
15  31  2  15,5  29  2  14,5  31  2  15,5 
20  39  2  19,5  39  2  19,5  40  2  20 
25  25  1  25  51  2  25,5  51  2  25,5 
30  30  1  30  30  1  30  30  1  30 
40  40  1  40  40  1  40  40  1  40 
50  50  1  50  50  1  50  50  1  50 
60  60  1  60  60  1  60  60  1  60 
70  70  1  70  70  1  70  70  1  70 
80  80  1  80  80  1  80  80  1  80 
100  100  1  100  100  1  100  100  1  100 

RADIAL AND AXIAL SHAFT LOADS

Worm-gear units are supplied with a hollow output shaft where a solid output shaft can be inserted. The robust housing of the hollow shaft and its bearings enable absorption of high radial forces while its service life is comparable with the other gearbox parts. The values shown in the Table 7.1have been calculated for the input speed of 1400 rpm. The maximum applied load shown 7.1 must not be exceeded. Taper bearings can be used on the output shaft at sizes 40 to 150 if required. A use of different bearings at the gear units need to be consulted with the manufacturers.

Radial Load Frad

 

To establish the radial load Frad the middle of the solid inserted shaft length is considered to be the point where the force is applied (see Fig.7.1). Should the actual radial load be applied on the shaft at a greater length, the maximum load must be reduced. For example only 80 % of the radial load shown in the table is applicable should the force be applied at 75 % of the shaft length. The radial load higher by 25 % can be applied should the force be applicable at 30 % of the shaft length. If a pulley, chain sprocket or gear wheel, etc. is fitted on the output shaft, the radial load can be determined from the following formula:

M2 x k x 2000
Frad = ——————————           
D

Frad = radial load [N]
M2 = output torque [Nm]
D =  calculated pulley diameter
(pitch circle) [mm]
k = load factory
1,00 for chain sprockets
1,25 for spur gears wheels 
1,50 for pulleys

It means that the shaft radial load can be decreased by the increase of the pulley diameter, if at all possible. Should the radial load be too high or the force be applied on the shaft at a long distance, an external support by bearings must be opted for to the force be applied on the shaft at a long distance, an external support by bearings must be opted for to absorb the additional forces. 

Axial load Fax

Permissible values of axial load Fax represent approximately 20 % of permissible radial load Frad.

 


Table 7.1 - Max. Permissible Radial and Axial Load

  RT/MRT 30A RT/MRT 40A RT/MRT 50A RT/MRT 60A RT/MRT 70A RT/MRT 80A RT/MRT 100A RT/MRT 120A RT/MRT 180A RT/MRT 180A
  i min-1 Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad
n1   1400 20 100 40 200 60 300 70 340 70 360 90 450 130 650 170 850 260 1300 500 1550
n2 5 280 110 600 150 780 200 980 300 1490 380 1880 450 2180 520 2655 750 3730 1020 5050 1100 5480
n2 7,5 187 130 660 170 870 220 1100 330 1650 420 2090 500 2490 580 2880 810 4050 1100 5480 1190 5950
n2 10 140 150 730 190 960 240 1220 360 1810 460 2300 550 2740 630 3170 890 4460 1210 6040 1310 6550
n2 12,5 112 160 790 210 1030 260 1310 390 1950 490 2470 590 2950 680 3410 960 4800 1300 6510 1410 7060
n2 15 93 170 840 220 1090 280 1390 420 2080 530 2630 630 3140 730 3630 1020 5110 1380 6920 1500 7510
n2 20 70 180 920 240 1200 310 1530 460 2280 580 2890 690 3450 800 3990 1120 5610 1520 7610 1650 8260
n2 25 56 200 990 260 1300 330 1650 490 2460 620 3120 740 3720 860 4300 1210 6050 1640 8200 1780 8890
n2 30 47 210 1050 270 1370 350 1750 520 2610 660 3300 790 3940 910 4560 1280 6410 1740 8690 1890 9430
n2 40 35 230 1160 300 1520 390 1930 580 2880 730 3650 870 4350 1010 5030 1410 7070 1920 9590 2080 10400
n2 50 28 250 1250 330 1630 420 2080 620 3100 790 3930 940 4680 1080 5420 1520 7620 2070 10330 2240 11210
n2 60 23 270 1330 350 1740 440 2220 660 3310 840 4190 1000 5000 1160 5790 1630 8140 2210 11030 2390 11960
n2 70 20 280 1380 360 1830 460 2320 680 3480 880 4360 1050 5240 1220 6065 1700 8530 2320 11560 2510 12540
n2 80 17,5 290 1460 380 1910 490 2430 720 3620 920 4590 1100 5480 1270 6340 1780 8910 2420 12080 2620 13110
n2 100 14 310 1570 410 2060 520 2620 780 3900 990 4950 1180 5900 1370 6830 1920 9600 2600 13010 2820 14120


Table 7.1 -Max. Permissible Radial and Axial Load for Taper Bearings

  RT/MRT 30A RT/MRT 40A RT/MRT 50A RT/MRT 60A RT/MRT 70A RT/MRT 80A RT/MRT 100A RT/MRT 120A RT/MRT 150A RT/MRT 180A
  i min-1 Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad Fax Frad
n1   1400 20 100 40 200 60 300 70 340 70 360 90 450 130 650 170 850 260 1300 500 1550
n2 5 280 150 720 340 1690 430 2130 750 3620 830 4200 860 4410 1220 6080 1640 8160 1740 8670 1790 8970
n2 7,5 187 160 790 370 1850 470 2350 820 4090 920 4620 960 4800 1310 6550 1760 8780 1870 9330 1930 9650
n2 10 140 170 860 400 2010 510 2570 890 4460 1010 5040 1050 5230 1430 7150 1910 9570 2040 10180 2100 10520
n2 12,5 112 180 920 430 2150 550 2750 950 4770 1080 5390 1120 5590 1530 7640 2050 10240 2180 10880 2250 11250
n2 15 93 200 980 460 2280 580 2900 1010 5040 1140 5700 1180 5920 1620 8080 2160 10820 2300 11510 2380 11900
n2 20 70 210 1060 500 2480 630 3160 1100 5490 1240 6210 1290 6440 1760 8800 2360 11790 2510 12530 2590 12960
n2 25 56 230 1140 530 2650 680 3380 1170 5870 1330 6640 1380 6890 1880 9410 2520 12600 2680 13400 2770 13850
n2 30 47 240 1200 560 2790 710 3560 1240 6190 1400 7000 1450 7260 1980 9910 2660 13280 2820 14120 2920 14600
n2 40 35 260 1310 610 3050 780 3890 1350 6760 1530 7640 1590 7930 2170 10830 2900 14510 3090 15430 3190 15950
n2 50 28 280 1400 650 3260 830 4160 1450 7230 1630 8170 1700 8480 2320 11580 3100 15510 3300 16490 3410 17050
n2 60 23 300 1490 690 3460 880 4420 1530 7670 1730 8670 1800 9000 2460 12280 3290 16460 3500 17500 3620 18090
n2 70 20 310 1550 720 3610 910 4610 1600 8020 1810 9030 1870 9370 2560 12800 3440 17160 3650 18250 3770 18860
n2 80 17,5 320 1610 750 3760 960 4790 1660 8320 1880 9410 1950 9760 2670 13330 3570 17860 3800 18990 3930 19640
n2 100 14 350 1730 800 4020 1030 5130 1780 8900 2010 10060 2090 10440 2850 14260 3820 19100 4060 20310 4200 21000


TYPE IDENTIFICATION DIAGRAM


Tab. 4.1 :Mounting Positions and Design


Nominal Power

In operating conditions with a service factor Sm = 1 the reducers can be maximally loaded with capacities as shown in table 8.1., 22.1., 8.2. – 8.3. These tables show various ingoing revolutions, n1 [min-1], the maximum outgoing torques M2max [Nm] and the accompanying ingoing capacities P1[kW]. In exceptional cases can be used ingoing otáčky n1 = 2800 [min-1], but should be consulted with the manufacturer.

Combination of two worm gear reducers is a precondition for achieving very high ratio under keeping high compactibility. This design allows in the abstract to achieve ratio upto 10 000:1. From practical reasons are used ratios only upto 4 000:1.

Table 8.1. Table of Rated Data RT/MRT

Table 22.1. Table of Rated Data 80 AP

Table 8.2. Table of Rated Data MRP

Table 8.3. Table of Rated Data combination RT/MRT

Performance Data

Selection of a gear unit with electric motor we can make as a Table 8.4. Tables are lined up for a posibility posibility of an ideal gear unit size selection based on a requested electric motor input power. Requested ratio and output speed show appropriate torque M2 and service factor Sf. These values are in table stated for electric motors of 4 and 6 poles execution.

Table 8.4.1. Table of Performance Data of Gear Units MRT

Table 8.4.2. Table of Performance Data of Gear Units MRP

Table 8.4.3. Table of Performance Data of Combined Gear Units MRT x RT 

Accessories

Under the customer request is possible to deliver following accessories:

 

Output Shaft - single sided

TYPE A1 A2 C Dh7 D1 L L1 L2 F P R DS M1 M2 Kg
DIN 332 I II
RT – MRT 30A 62 94 2,5 14 20 30 94,5 127 5 20 2,5 20 M5 M5 0,12 0,16
RT – MRT 40A 80 132 10 19 23 40 130 177 6 32 3 25 M6 M6 0,3 0,4
RT – MRT 50A 97 158 5 24 28 50 152 213 8 40 3,5 34 M8 M8 0,55 0,75
RT – MRT 60A 118 185 5 25 30 60 183 250 8 50 3,5 34 M10 M8 0,7 0,9
RT – MRT 70A 119 191 10 28 35 60 189 256 8 50 3,5 34 M10 M8 0,9 1,25
RT – MRT 80A 138 205 5 35 40 60 203 270 10 50 4 45 M12 M8 1,5 2
RT – MRT 100A 150 234 10 40 46 80 240 324 12 70 5 53 M16 M12 2,4 3,2
RT – MRT 120A 170 264 10 45 52 90 270 364 14 80 5 53 M16 M12 3,4 4,6
RT – MRT 150A 218 323 10 55 62 100 328 433 16 90 6 68 M20 M16 6,1 8,1
RT – MRT 180A 262 377 10 60 68 110 382 497 18 100 6 78 M20 M16 8,9 12


Output Shaft - double sided

TYPE A1 A2 C Dh7 D1 L L1 L2 F P R DS M1 M2 Kg
DIN 332 I II
RT – MRT 30A 61 95,5 2,5 14 20 30 94 128 5 20 2,5 20 M5 M5 0,12 0,16
RT – MRT 40A 80 132 10 19 23 40 125 182 6 32 3 25 M6 M6 0,3 0,4
RT – MRT 50A 97 158 10 24 28 50 152 218 8 40 3,5 34 M8 M8 0,55 0,75
RT – MRT 60A 118 185 5 25 30 60 183 250 8 50 3,5 34 M10 M8 0,7 0,9
RT – MRT 70A 120 191 10 28 35 60 185 261 8 50 3,5 34 M10 M8 0,9 1,25
RT – MRT 80A 138 205 5 35 40 60 203 270 10 50 4 45 M12 M8 1,5 2
RT – MRT 100A 150 242 10 40 46 80 240 332 12 70 5 53 M16 M12 2,4 3,2
RT – MRT 120A 170 272 10 45 52 90 270 372 14 80 5 53 M16 M12 3,4 4,6
RT – MRT 150A 218 330 10 55 62 100 328 440 16 90 6 68 M20 M16 6,1 8,1
RT – MRT 180A 262 377 10 60 68 110 382 497 18 100 6 78 M20 M16 8,9 12


Reaction Arm

TYPE A B C D E F G H J Weight
Kg
RT – MRT 30A 85 40 143 55 65 8 14 7 4 0,22
RT – MRT 40A 100 39 161 50 65 8 14 7 4 0,25
RT – MRT 50A 100 44 170 60 75 10 20 7 4 0,3
RT – MRT 60A 150 53 233 70 85 10 20 9 5 0,57
RT – MRT 70A 200 62,5 295 80 100 14 24 9 6 1,1
RT – MRT 80A 200 77,5 315 110 130 14 24 11 6 1,25
RT – MRT 100A 230 77,5 345 110 130 14 24 11 6 1,35
RT – MRT 120A 260 95 395 130 165 16 26 13 8 2,45
RT – MRT 150A 300 125 480 180 215 16 26 15 8 3,7
RT – MRT 180A 350 150 545 230 265 25 30 17 8 4


Reducer Shaft Sleeves

ID D1 D2 B1 B2 L
1109 6356 9 11 3 4 20
1409 7156 9 14 3 5 30
1411 7163 11 14 4 5 23
1911 8063 11 19 4 6 40
2411 9063 11 24 4 8 50
1914 8071 14 19 5 6 30
2414 9071 14 24 5 8 50
2814 0071 14 28 5 8 60
2419 9080 19 24 6 8 40
2819 0080 19 28 6 8 60
3819 3280 19 38 6 10 80
2824 0090 24 28 8 8 50
3824 3290 24 38 8 10 80
4224 6090 24 42 8 12 110
3828 3200 28 38 8 10 80
4228 6000 28 42 8 12 110
4238 6032 38 42 10 12 80


Upon requirement of the client is possible to provide gear reducer RT and MRT on the output (or input) with:

  • a suitable kind of shaft coupling for an aligning of a radial, axial and angular offsets of shafts
  • slip clutch to limit transmitted torque
  • eventually overrunning clutch
  • combination of the flexible coupling with overload clutch
  • combination of the flexible coupling with overrunning clutch.

Lublicants

RT/MRT gear units are lubricated by running the worm wheel or the worm in oil in combination with oil splashing. Under normal conditions a reliable operation as well as service life and efficiency of the gear units are secured. Gearboxes sizes 30 to 80 can be used at any mounting position. Gearboxes sizes 100 to 180 are suitable for mounting positions as shown in Table 4.1 Mounting Positions and Design due to positioning of the breathe plug. For any other mounting position please contact the manufacturers.

RT/MRT gear units are generally supplied filled for life – ÖMV PG 460EP is a synthetic oil enabling maintenance-free operation. Under normal conditions no oil needs to be changed during service life of the gearboxes. Should a different lubricant be required, e.g. due to more demanding conditions (higher operating temperature, high speed etc.), it must be established that oil additives do not affect bronze and/or oil seals in any way. It is recommended to use synthetic oils which guarantee high service life, stability and dynamic efficiency of the worm gears. When mineral oil is used, it must be changed in certain periods. In case grease is used as lubricant, reduction of heat dissipation, reduction of efficiency and reduced lubrication of all moving parts should be expected causing higher wear of the gear unit. Recommended equivalent lubricants are shown in the Tab. 19.1. The oil quantity per individual type and size of gear units is shown in the Table 19.2.

Table. 19.1 Equivalent Lubricants

Ambient temperature -10oC – +50oC -30oC – +100oC -40oC – +120oC -10oC – +60oC
Lubricant Mineral oil Synthetic oil Synthetic grease
Type of load normal high normal and high normal and high
 OMV Öle HST 320 EP Öle HST 460 EP PG 460 EP PG 220 EP Duraplex EP 00
 Agip Blasia 320 Blasia 460 Blasia S
 Aral Degol BG 320 Degol BG 460 Degol GS 220 Degol PAS 230 Aralub BAB EP
 Castrol Alpha SP 320 Alpha SP 460 Alpha SH 220 Alphagel
 ESSO Spartan EP 320 Spartan EP 460 Grease S420
 Kluber Lamora 320 Lamora 460 Syntheso HT220 Syntheso HT220 Strugtovis P Liquid
 Mobil Mobilgear 632 Mobilgear 634 Glycoil 30 Glycoil Grease 00
 Shell Omala EP 320 Omala EP 460 Tivela Oil WB Omala HD 320 Tivela GL 00
 Optimol Optigear BM 320 Optigear BM 460 Optiflex A 220 Longtime PD 00
 Total Carter EP 320 Carter EP 460
 Paramo Paramol CLP 320 Paramol CLP 460

All gear units are supplied filled for life as standard.

Table. 19.2 Lubricant Fill

Type
 
Oil 
[l]
(M)RT 30A 0,04
(M)RT 40A 0,13
(M)RT 50A 0,21
(M)RT 60A 0,36
(M)RT 70A 0,46
(M)RT 80A 0,7
(M)RT 100A 1,6
(M)RT 120A 2,2
(M)RT 150A 4
(M)RT 180A 7
MRP 40A 0,13+0,05
MRP 50A 0,21+0,05
MRP 60A 0,36+0,15
MRP 70A 0,46+0,20
MRP 80A 0,70+0,20
MRP 100A 1,6+0,3
MRP 120A 2,2+0,4
MRP 150A 4+0,3
MRP 180A 7,0+0,3

Storage, putting into the operation and maintenance

Storage

If the worm gear boxes are stored for longer periods of time or are not used, It Is necessary to take certain measures. All untreated metals need to be conserved in order to avoid corrosion. The choice of conservation depends on the environmental conditions. Storage should take place In a dust, moisture and vibration free environment to as great an extent as possible. If the reducers are fitted with a filling/ventilation plug, the reducer needs to be completely filled with oil, and the ventilation plug has to be sealed. It is recommended that the reducers are run for a few revolutions once every 3 – 4 months.

Instalation

The following aspects are important when installing a worm gear reducer:

  • avoid external vibrations and high ambient temperatures
  • an elastic coupling should be given preference for jolting loads
  • shafts and couplings must be installed in line and according to the assembly instructions
  • the worm gear reducer must be mounted on a level (machined) surface. If mounting is carried out directly on to the shaft to be driven, the entire construction process must be carried out in such a way that the reaction torque is sufficiently taken up
  • all parts to be mounted on to the infeed shaft must be drawn using the tapped hole in the shaft on the reducer shaft in order to prevent damage being caused to the bearings
  • mounting surtaces of flanges and shafts need to be conserved before assembly in order to prevent oxidization
  • if oil lubrication is used the reducer must be filled with a quantity of oil as indicated on the type plate, see Tab. 19.2.
  • if the reducer is not used for longer period of time, the storage instructions must be adhered to
  • after long term storage with a full oil filling, it is important to adjust the oil quantity and to refit the ventilation plug before putting the unit into operation

Maintenance

Because the worm gear reducers are provided as standard with a syntetic grease lubricant maintenance is not necessary. For worm gear reducers with a mineral oil lubricant it is necessary to change the oil – see Table 12.1. After running in with oil the reducer must be cleaned and given new oil.

Running in

During the period of the first about 400 hours it is recommended that the reducer is not nominally loaded, but that a start is made with 70% for the first hours after which the load can be gradually increased to the nominal load. The rise in temperature is higher during the running in period than afterwards.

Cleaning

Drain the oil at operating temperature. Rinse the worm gear reducer clean.

Filling with oil

Fill the reducer with the definitive oil quantity as indicated on the type plate see Tab. 19.2.

Table 12.1. Lubricating intervals [h]

oil temperature oC type of load mineral oil synthetic oil/grease
< 60 continuous interrupted 4000
6000
lifetime
> 60 continuous interrupted 2000
4000
lifetime

Warning:
Synthetic and mineral lubricants can not be mixed together. Mixing the synthetic lubricants of differing manufacturers can also cause problems. If the type or brand of lubricant is changed the reducer must be cleaned out.

Shaft seals

The good running thus the life of shaft seals, is affected in a very remarkable way by the running temperature in the contact area, by potential chemical reactions occuring between the rubber compound and the lubricant, and by the saving status of the seal itself. The replacement of shaft seals becomes necessary when: the seals are damaged and does not work proper way.

Spare parts

 

1 Housing 13 Input flange
2 FT flange 14 Bearing
3 Oil seal 15 RT worm
4 Bearing 16 Bearing
5 Worm wheel 17 Oil seal
6 NBR cap 18 RT cap
7 Circlip 19 FF flange
8 Circlip 20 Foot
9 Bearing 21 Reaction arm
10 Worm gear 22 Output double-sided shaft – complete
11 Bearing 23 Output double-sided shaft – complete
12 Oil seal    
1 Housing 10 Flange
2 Bearing 11 Bearing
3 Oil seal 12 Step gearing housing
4 Spur gear step 13 Worm wheel
5 Circlip 14 Bearing
6 Bearing 15 Circlip
7 Circlip 16 NBR cap
8 Pinion 17 Circlip
9 Oil seal    

Bearings and Seals

TYPE Motor MRT RT
Bearing 4 Bearing 7 Oil gasket 2 Bearing 4A Bearing 7A Oil gasket 2A
30A 56; 63 HK 2016 6300 20x28x7 6201 6300 12x32x7
20x26x16 10x35x11 12x32x10 10x35x11
40A 63 6004 6302 20x35x7 6302 6302 15x26x7
20x42x12 15x42x13 15x42x13 15x42x13
71 61905 6302 25x35x7      
25x42x9 15x42x13      
50A 63; 71 6205 6304 25x40x7 30304 30304 17x35x7
25x52x15 20x52x15 20x52x15 20x52x15
80 61906 6304 30x40x7      
30x47x9 20x52x15      
51107 30304 30x40x7      
35x37x12 20x52x15      
60A 71; 80 32006 30205 30x47x7 30206 30205 28×40-7
30x55x17 25x52x15 30x62x16 25x52x13
90 61907 6304 35x47x7      
35x55x10 25x52x15      
51107 30205 35x47x7      
35x52x12 25x52x15      
70A 71; 80 32006 30205 30x47x7 30206 30205 28×40-7
30x55x17 25x52x15 30x62x16 25x52x13
90 61907 6304 35x47x7      
35x55x10 25x52x15      
51107 30205 35x47x7      
35x52x12 25x52x15      
80A 80; 90 30207 30306 35x55x7 30206 30205 30x55x7
35x72x17   30x62x16 25x52x13
100 32008 30306 40x55x7      
40x69x19 30x72x19      
100A 80; 90; 100; 112 32208 31307 40x62x12 32208 31307 40x62x8
40x80x24,75 35x80x22,75 40x80x24,75 35x80x22,75
120A 80; 90; 100; 112 32208 31307 40x62x12 32208 31307 40x62x8
40x80x24,75 35x80x22,75 40x80x24,75 35x80x22,75
150A 100; 112; 132 32211 31309 55x80x10  31309 31309 45x75x8
55x100x22,75 45x100x27,75 45x100x27,75 45x100x27,75
180A 112; 132; 160 31312 31312 60x80x10  31312 31312 60x75x9
60x130x33,5 60x130x33,5 60x130x33,5 60x130x33,5
TYP 12 12A 11
RT – MRT 30A 6005 7005  
25x47x12 25x47x12 25x40x7
RT – MRT 40A 6006 32006  
30x55x13 30x55x17 30x47x7
RT – MRT 50A 6007 32007  
35x62x14 35x62x18 35x50x7
RT – MRT 60A 6008 32008  
40x68x15 40x68x19 40x55x7
RT – MRT 70A 6009 32009  
45x75x16 45x75x20 45x60x8
RT – MRT 80A 6010 32010  
50x80x16 50x80x20 50x65x8
RT – MRT 100A 6011 32011  
55x90x18 55x90x23 55x72x10
RT – MRT 120A 6013 32013  
65x100x18 65x100x23 65x85x12
RT – MRT 150A 6216 30216  
80x140x26 80x140x28,25 80x100x10
RT – MRT 180A 6218 32218  
90x160x30 90x160x42,5 90x110x12

Electromotors

This paragraph provides basic technical and dimensional data of three-phase squirrel cage asynchronous electric motors with frame sizes 56 to 160 supplied by Siemens. Any further details and/or technical information can be obtained from the manufacturers.

Mounting Positions of Electric Motors:

Terminal box on top as standard – pos. 1

If different terminal box position is required please specify in your order as special requirement.

Technical Data:

Mounting:

– flange mounted IM 3041 (IM B5), IM 3641 FT** (IM B14 FT**)
– foot & flange mounted IM 2081 (IM B35)
– all mounting to IEC 34-7 code I/II

Mounting dimension:

– in compliance with IEC 72 / DIN 42673

Protection:

– IP 55


Table. 25.1: 2 -pole, Synchronous Speed 3000 rpm

Size   Output Speed Rated current A Rated torque Power factor Efficiency Ratio Inertia Weight
    kW rpm 400 V Nm cos φ η % Ik/In Mz/Mn kg×m2 kg
56 2s 0,09 2830 0,26 0,3 0,81 63 3,7 2,0 0,00015 3,0
56 2 0,12 2800 0,32 0,41 0,83 65 3,7 2,1 0,00015 3,0
63 2s 0,18 2820 0,51 0,61 0,82 63 3,7 2,0 0,00018 3,5
63 2 0,25 2830 0,68 0,84 0,82 65 4,0 2,0 0,00023 4,1
71 2s 0,37 2740 1,00 1,3 0,82 66 3,5 2,3 0,00035 5,0
71 2 0,55 2800 1,36 1,9 0,82 71 4,3 2,5 0,00045 6,6
80 2s 0,75 2855 1,73 2,5 0,86 73 5,6 2,3 0,00085 8,2
80 2 1,1 2845 2,4 3,7 0,87 77 6,1 2,6 0,0011 9,9
90S 2 1,5 2860 3,25 5,0 0,85 79 5,5 2,4 0,0015 12,9
90L 2 2,2 2880 4,55 7,3 0,85 82 6,3 2,8 0,0020 15,7
100L 2 3,0 2890 6,1 9,9 0,85 84 6,8 2,8 0,0038 21,5
112M 2 4,0 2905 7,8 13,1 0,86 86 7,2 2,6 0,0055 29
132S 2 5,5 2925 10,3 18 0,89 86,5 5,9 2,0 0,016 40,5
132S 2 7,5 2930 13,8 24,4 0,89 88 6,9 2,3 0,021 48,5
160M 2 11 2940 20,0 36 0,88 89,5 6,5 2,1 0,034 68,5
160M 2 15 2940 26,5 49 0,90 90 6,6 2,2 0,040 76,5
160L 2 18,5 2940 32,5 60 0,91 91 7,0 2,4 0,052 87


Table. 25.2: 4 -pole, Synchronous Speed 1500 rpm

Size   Output Speed Rated current A Rated torque Power factor Efficiency Ratio Inertia Weight
    kW rpm 400 V Nm cos φ η % Ik/In Mz/Mn kg×m2 kg
56 4s 0,06 1350 0,20 0,42 0,77 56 2,6 1,9 0,00027 3,0
56 4 0,09 1350 0,29 0,63 0,77 58 2,6 1,9 0,00027 3,0
63 4s 0,12 1350 0,42 0,84 0,75 55 2,8 1,9 0,0003 3,5
63 4 0,18 1350 0,56 1,3 0,77 60 3,0 1,9 0,0004 4,1
71 4s 0,25 1350 0,76 1,8 0,79 60 3,0 1,9 0,0006 4,8
71 4 0,37 1370 1,03 2,5 0,8 65 3,3 1,9 0,0008 6,0
80 4s 0,55 1395 1,45 3,7 0,82 67 3,9 2,2 0,0015 8,0
80 4 0,75 1395 1,86 5,1 0,81 72 4,2 2,3 0,0018 9,4
90S 4 1,1 1415 2,55 7,4 0,81 77 4,6 2,3 0,0028 12,3
90L 4 1,5 1420 3,4 10,1 0,81 79 5,3 2,4 0,0035 15,6
100L 4s 2,2 1420 4,7 14,8 0,82 82 5,6 2,5 0,0048 21,5
100L 4 3,0 1420 6,4 20,2 0,82 83 5,6 2,7 0,0058 24,5
112M 4 4,0 1440 8,2 26,5 0,83 85 6,0 2,7 0,011 31
132S 4 5,5 1455 11,4 36,1 0,81 86 6,3 2,5 0,018 42,5
132M 4 7,5 1455 15,2 49,2 0,82 87 6,7 2,7 0,024 49
160M 4 11 1460 21,5 72 0,84 88,5 6,2 2,2 0,040 68
160L 4 15 1460 28,5 98,1 0,84 90 6,5 2,6 0,052 93,5


Table. 25.3: 6 -pole, Synchronous Speed 1000 rpm

Size   Output Speed Rated current A Rated torque Power factor Efficiency Ratio Inertia Weight
    kW rpm 400 V Nm cos φ η % Ik/In Mz/Mn kg×m2 kg
63 6 0,09 870 0,47 1,0 0,70 40 2,0 1,8 0,0004 4,1
71 6s 0,18 835 0,62 2,0 0,75 56 2,3 2,1 0,0006 6,3
71 6 0,25 850 0,78 2,8 0,76 61 2,7 2,2 0,0009 6,3
80 6s 0,37 920 1,2 3,8 0,72 62 3,1 1,9 0,0015 7,5
80 6 0,55 910 1,6 5,8 0,74 67 3,4 2,1 0,0018 9,4
90S 6 0,75 915 2,1 7,8 0,76 69 3,7 2,2 0,0028 12,5
90L 6 1,1 915 2,9 11,5 0,77 72 3,8 2,3 0,0035 15,7
100L 6 1,5 925 3,9 15 0,75 74 4,2 2,2 0,0063 24
112M 6 2,2 940 5,2 22 0,78 78 4,6 2,2 0,011 27
132S 6 3,0 950 7,2 30 0,76 79 4,2 1,9 0,015 41
132M 6 4,0 950 9,4 40 0,76 80,5 4,5 2,1 0,019 46
132M 6 5,5 950 12,8 55 0,76 83 5,0 2,3 0,025 54
160M 6 7,5 960 17,0 75 0,74 86 4,6 2,1 0,041 76
160L 6 11 960 24,5 109 0,74 87,5 4,8 2,3 0,049 102


Table. 25.4: 8 -pole, Synchronous Speed 750 rpm

Size   Output Speed Rated current A Rated torque Power factor Efficiency Ratio Inertia Weight
    kW rpm 400 V Nm cos φ η % Ik/In Mz/Mn kg×m2 kg
71 8s 0,09 630 0,36 1,4 0,68 53 2,2 1,9 0,0009 6,3
71 8 0,12 645 0,51 1,8 0,64 53 2,2 2,2 0,0009 6,3
80 8s 0,18 675 0,75 2,5 0,68 51 2,3 1,7 0,0015 7,5
80 8 0,25 680 1,03 3,5 0,64 58 2,6 2 0,0018 9,4
90S 8 0,37 675 1,13 5,2 0,75 63 2,9 1,6 0,0025 10,5
90L 8 0,55 675 1,58 7,8 0,76 66 3,0 1,7 0,0035 13,2
100L 8 0,75 680 2,15 10,5 0,76 66 3,0 1,7 0,0053 20
100L 8 1,1 680 2,9 15,4 0,76 72 3,4 1,9 0,0070 22
112M 8 1,5 705 3,9 20 0,76 74 3,7 1,8 0,013 24
132S 8 2,2 695 5,7 30 0,74 75 3,9 1,9 0,014 41
132M 8 3,0 700 7,6 40 0,74 77 4,1 2,1 0,019 49
160M 8s 4,0 715 10 53 0,72 80 4,5 2,2 0,035 61
160M 8 5,5 710 13 73 0,73 83,5 4,7 2,3 0,043 70
160L 8 7,5 715 17,7 100 0,72 85 5,3 2,7 0,062 91


Table. 25.5 Dimensions of Motors

Size Flanged motors – dimensions in mm
  Dk6 E F G GD AC HF HG L LB LD LG LK
56 9 20 3 7,2 3 116 78,5 101 177 157 69,5 75 32
63 11 23 4 8,5 4 118 78,5 101 202 179 69,5 75 32
71 14 30 5 11 5 139 88,5 111 240 210 63,5 75 32
80 19 40 6 15,5 6 156,5 95,5 120 272,5 232,5 63,5 75 32
90 24 50 8 20 7 173,6 105,5 128 331 281 79 75 32
100 28 60 8 24 7 196 78 129 327,5 312,5 102 120 42
112 28 60 8 24 7 219,5 91 142 393 333 102 120 42
132S 38 80 10 33 8 259 107 164 454 374 128,5 140 42
132M 38 80 10 33 8 259 107 164 454 374 128,5 140 42
160M 42 110 12 37 8 314 127 191 588 478 160,5 165 54
160L 42 110 12 37 8 314 127 191 588 478 160,5 165 54

 

Size Flanged motors – dimensions in mm
  Mounting IM B5 flange Mounting IM B 14FT.. small flange Mounting IM B 14FT.. bigger
    M Nj6 P S T LA   M Nj6 P S T   M Nj6 P S T
56 FF100 100 80 120 7 3 8 FT65 65 50 80 M5x16 2,5 FT85 85 70 105 M6x16 2,5
63 FF115 115 95 140 10 3 8 FT75 75 60 90 M5x14 2,5 FT100 100 80 120 M6x16 3
71 FF130 130 110 160 10 3,5 9 FT85 85 70 105 M6x16 2,5 FT115 115 95 140 M8x16 3
80 FF165 165 130 200 12 3,5 10 FT100 100 80 120 M6x16 3 FT130 130 110 160 M8×16 3,5
90 FF165 165 130 200 12 3,5 10 FT115 115 95 140 M8x21 3 FT130 130 110 160 M8×22 3,5
100 FF215 215 180 250 14,5 4 11 FT130 130 110 160 M8×20 3,5 FT165 160 130 200 M10x20 3,5
112 FF215 215 180 250 14,5 4 11 FT130 130 110 160 M8×20 3,5 FT165 160 130 200 M10×20 3,5
132S FF265 265 230 300 14,5 4 12 FT165 165 130 200 M10×24 3,5
132M FF265 265 230 300 14,5 4 12 FT165 165 130 200 M10×24 3,5
160M FF300 300 250 350 18,5 5 13
160L FF300 300 250 350 18,5 5 13

 


Photogallery

Worm gear reducers RT/MRT

Worm gear RT with combination gearbox ATC